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Abstract
Intelligent transportation systems (ITS) play an important role in the quality of life of citizens in any metropolitan city. 
Despite various policies and strategies incorporated to increase the reliability and quality of service, public transportation 
authorities continue to face criticism from commuters largely due to irregularities in bus arrival times, most notably mani-
fested in early or late arrivals. Due to these irregularities, commuters may miss important appointments, wait for too long 
at the bus stop, or arrive late for work. Therefore, accurate prediction models are needed to build better customer service 
solutions for transit systems, e.g. building accurate mobile apps for trip planning or sending bus delay/cancel  notifications. 
Prediction models will also help in developing better appointment scheduling systems for doctors, dentists, and other busi-
nesses to take into account transit bus delays for their clients. In this paper, we seek to predict the occurrence of arrival time 
irregularities by mining GPS coordinates of transit buses provided by the Toronto Transit Commission (TTC) along with 
hourly weather data and using this data in machine learning models that we have developed. In our study, we compared the 
performance of a Long Short Term Memory Recurrent Neural Network (LSTM) model against four baseline models, an 
Artificial Neural Network (ANN), Support Vector Regression (SVR), Autoregressive Integrated Moving Average (ARIMA) 
and historical averages. We found that our LSTM model demonstrates the best prediction accuracy. The improved accuracy 
achieved by the LSTM model may lend itself to its ability to adjust and update the weights of neurons while accounting for 
long-term dependencies. In addition, we found that weather conditions play a significant role in improving the accuracy 
of our models. Therefore, we built a prediction model that combines an LSTM model with a Recurrent Neural Network 
Model (RNN) that focuses on the weather condition. Our findings also reveal that in nearly 37% of scheduled arrival times, 
buses either arrive early or late by a margin of more than 5 min, suggesting room for improvement in the current strategies 
employed by transit authorities.
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1  Introduction

The importance of modeling and predicting bus arrival times 
for public transit has long been recognized (Kumar et al. 
2014). Throughout the past decade, much work has been 
done to explore means of achieving faster and more reliable 
transit systems (Hua et al. 2018). However, public transit 
authorities continue to face criticisms from commuters due 
to discrepancies between a vehicle’s scheduled and actual 
arrival times. These irregularities naturally have a nega-
tive impact on the commuter’s daily life. Commuters may 
miss medical appointments, school events, or arrive late for 
work. With the availability of large scale pervasive data, 
e.g. GPS locations collected from buses, we believe that 
machine learning algorithms can help in predicting actual 
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arrival times for public transit buses, and assist in strategies 
to overcome their discrepencies with scheduled times.

This paper aims at modelling the irregularities in arrival 
times for public transit buses using historical bus arrival 
times, stop locations, bus schedules, and weather data. Irreg-
ularities can be considered to occur in one of two ways, leads 
(early arrival at a stop) and delays (late arrival at a stop). We 
focused on predicting irregularities for transit buses for the 
City of Toronto, where irregularities in bus arrival times are 
so commonly occurring that Toronto Transit Commission 
(TTC) issues notes for commuters who arrive late for work 
due to misleading scheduling times (Star 2020).

To reduce irregularities in arrival times, transit authorities 
incorporate a variety of strategies to bridge the gap between 
actual and scheduled arrival times of buses. Among these 
strategies, the holding control strategy is found to be the 
most effective to regulate bus operations (Fu and Yang 
2002). This strategy seeks to address the phenomenon called 
bus headway, which is a large, accumulated arrival lead or 
delay in a bus stop that results from a succession of leads or 
delays that occurred in previous stops. By holding an early-
arriving bus, a bus headway can be mitigated and service 
reliability can be improved (Fu and Yang 2002). Another 
strategy is stop-skipping, which is particularly useful when 
buses are running late and behind their schedule (Liu et al. 
2013). Despite applying these strategies, transit services 
continue to face delays in their daily operations, which could 
be due to ongoing road constructions, bus breakdown, road 
accidents, or other day-to-day factors. Therefore, transit 
authorities seek to increase the quality of service by provid-
ing passengers with predicted arrival times at a bus stop 
using algorithms that exploit transit data (Hua et al. 2018). 
With computational power becoming cheaper and easily 
accessible, it is increasingly feasible to use data driven mod-
els for accurately predicting arrival times by leveraging a 
large volume of data. These prediction models can assist in 
developing intelligent trip planning apps, improved schedul-
ing systems for doctors and other businesses, and improving 
urban planning strategies for city authorities.

In this paper, we propose a regression task to test the abil-
ity for machine learning algorithms to predict whether a bus 
at a given stop and time will be early, on time, or late based 
on the transit and weather data for Toronto Transit Commis-
sion (TTC). The machine learning models that we experi-
ment with include traditional feed-forward artificial neural 
network (ANN) and a recurrent neural network (RNN) using 
long short term memory (LSTM).

Our contribution can be summarized as follows:

–	 To our knowledge, this is the first work that investigates 
the impact of weather data on prediction accuracy for 
bus arrival times. We compare the prediction models 
with and without weather features. Previous work either 

avoided using weather data altogether, e.g. (Kumar et al. 
2014) or did not find weather to be a useful feature for 
their prediction task (Patnaik et al. 2004).

–	 We used historical arrival times, weather data, and other 
input features for arrival time prediction for transit buses. 
We found that the LSTM model, a variant of Recurrent 
Neural Network that uses long term dependencies, yields 
the best predictive performance.

–	 We found that weather has strong relationship with 
arrival time prediction models. In nearly half of our data, 
including weather improved the prediction accuracy by 
48%. We also found that including the weather data sig-
nificantly improves the accuracy when predicting bus 
arrival times at multiple future stops in a trip.

–	 Because of the importance of weather, we built a sepa-
rate RNN model that focuses on the weather feature and 
combined its result with the result of the LSTM model. 
This combined hybrid model improved the prediction by 
more than 500%.

The rest of the paper is organized as follows. The next sec-
tion discusses the related work. Section 3 discusses the data 
collection. Section 4 discusses the machine learning mod-
els that we used. Section 5 discusses the results and Sect. 6 
concludes the paper.

2 � Related work

This section discusses related work on bus arrival prediction. 
In general, previous work used linear regression (LR) (Hua 
et al. 2018), non-parametric regression (NPR) (Chang et al. 
2010; Balasubramanian and Rao 2015), or Kalmann Filters 
(KFT) (Shalaby and Farhan 2004).

Hua et al. (2018) use linear regression to predict bus 
locations. Bus location data displays non-linear relation-
ships between its features. Therefore, data has to be con-
verted into a linear space to be used in conventional math-
ematical models such as linear regression. This requires a 
significant amount of data pre-processing and be in turn, 
costly and time-consuming. Kormáksson et. al. (2014) use 
additive models (non linear regression models) to predict 
bus arrival times using General Transit Feed Specification 
(GTFS) data. GTFS data is standardized by Google, which 
is used to provide schedules and geographic information to 
Google Maps and other Google applications that show tran-
sit information. Regression models are easy to interpret and 
fast to train. Shalaby and Farhan (2004) use very limited 
AVL (Automatic Vehicle Location) and APC (Automatic 
Passenger Counter) data on Kalmann Filters (KFT) to pre-
dict the arrival time for Toronto Transit Buses. Their data 
size is small (only 5 days of vehicle locations). In our study, 
we used 3.5 million data points which were collected over a 
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period of four months. We use large datasets for predicting 
arrival times using machine learning algorithms. Wang et. 
al. (Wang et al. 2019) applies a multi-objective optimization 
technique to reduce the capacity allocation of subway sys-
tems based on different factors, e.g. number of passengers, 
headway, number of available trains. Their objective is to 
reduce the passenger wait time in the subway system. Simi-
larly, passenger travel time was used to predict the arrival 
time in subway stations a in study done for the city of Bei-
jing (Xu et al. 2020). We used several input features in our 
prediction models, e.g. past arrival time, day of the week, 
hour of the day, etc. Liu et al. (2019) studied the optimal 
combination of different input features in mass rapid transit 
(MRT) systems. However, they did not consider the weather 
in their study.

Kumar et. al. (2014) compared Kalmann Filters (1960) 
with artificial neural network for bus arrival prediction in 
Chennai, India. A key finding of this experiment was that 
with a large volume of data, artificial neural network models 
give better accuracy as compared to mathematical models 
(linear regression and kalmann filters). Wang et. al. (2009) 
use a Support Vector Machine (SVM) to model traffic con-
ditions. They used bus arrival times and bus schedules as 
inputs to train their model. ANN and kernalized SVM have 
gained popularity for predicting travel time because of their 
ability to solve complex and non-linear relationships among 
features (Chien et al. 2002; Kumar et al. 2014; Jeong and 
Rilett 2004). In Hua et al. (2018), the performance of lin-
ear regression, artificial neural networks and support vector 
machine models were compared for prediction of bus arriv-
als at a single stop using data from multiple routes. Lin-
ear regression’s performance was poor due to non-linearity 
in data, however the performance of ANN and SVM were  
quite competitive. These approaches did not use recurrent 
neural networks in their predictions. Our work uses LSTM 
recurrent neural networks. Moreover, we use weather data 
in our prediction, which had not been incorporated in any 
way in the previous approaches.

To our knowledge, there has not been an abundance of 
work that uses weather data for predicting arrival times for 
public transit buses. Yang et. al. (2016) use a combination 
of genetic algorithms and support vector machines along 
with weather conditions to predict bus arrival time. They 
did not use historical arrival times and did not explore 
recurrent neural networks in their study. Chen et. al. ( 2004) 
used weather condition and automatic passenger counting 
data with ANN for bus arrival prediction for New Jersey 
county. The previous two studies only relied on weather con-
ditions (i.e. snow, rain, fog) in their models. We consider 
other weather attributes, such as visibility and temperature. 
Patnaik et al. (2004) used weather data as features for bus 
arrival prediction model, however their experiment failed to 
show improvement with weather data.

Ke et. al. used a combination of CNN and LSTM Recur-
rent Neural Networks along with weather data for forecasting 
short-term passenger demand for ride services (Ke et al. 2017). 
In contrast, we use weather data for a different problem, i.e. 
to predict arrival times of transit buses. Rui et.al. compared 
the performance of a GRU Model (Gated Recurrent Neural 
Network) and LSTM model on yet another prediction task 
concerning traffic flow prediction (Fu et al. 2016).

3 � Dataset collection

We used four datasets to build our models: (1) Live Automatic 
Vehicle Locations (AVL) data for Toronto Transit Comission 
(TTC) transit buses, collected every 20 s, (2) bus schedules (3) 
and bus stop locations retrieved from GTFS (General Transit 
Feed Specification) data, (4) hourly weather data collected 
from a weather station near downtown Toronto. The AVL data 
comprises of GPS locations for Toronto Transit Commission 
(TTC) buses. This data is publicly available through the Next-
Bus API (Nextbus 2020). We collected more than 700,000 
unique live GPS locations for transit buses for two routes, 
Route 28 and Route 8 (Fig. 1) for the City of Toronto over 3 
months, from January 2018 to March 2018. Figure 2 presents 

Fig. 1   GPS locations mapped to bus stop location data for TTC 
routes. Markers are the GPS coordinates calculated for actual arrival 
time at each stop. The top map depicts Route 28, while the bottom 
map depicts Route 8
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an overview of our study. Table 1 summarizes the datasets 
that we used in our study. After collecting the four datasets, 
we calculated the arrival time for a bus at each bus stop in the 
studied routes. Then, we calculated the difference between the 
actual arrival time of a bus at a stop and its scheduled arrival 
time in that stop. Based on this difference, we determined if 
the bus had arrived early, on time, or was delayed. Then, we 
normalized the data from all four datasets and used them as 
inputs to our models.

3.1 � Estimating actual arrival time

The TTC data does not, in fact, specify whether a bus had 
arrived at a stop. The actual bus arrival time of a bus at a stop 
is calculated using the distance between the GPS location of 
the bus and the bus stop location. This distance is calculated 
using the haversine formula (Veness 2018), which is a well-
known formula used to calculate the path distance between 

two points on the surface of the earth, and has wide range 
of applications, e.g. (Chopde and Nichat 2013; Basyir et al. 
2017; Ingole and Nichat 2013). The formula gives the dis-
tances between two points on a sphere using their latitudes and 
longitudes while ignoring hills:

In Equation 1, � is latitude, � is longitude. In Eq. 2, c is 
the angular distance in radians. In Eq. 3, R is Earth’s radius 
(mean radius = 6371 km) and d is the distance between two 
GPS locations in kilometer. Since the real time GPS location 
data is collected for every 20 s, we may miss the exact time 
when the bus actually arrives at the bus stop. Furthermore, 
during a 20 s window, the bus could arrive at a bus stop and 
start moving again. In that case, the recorded GPS location 
of the bus could be further away from the bus stop.

To mitigate these issues, we identify the GPS location 
where the distance between the bus and the bus stop is mini-
mal. We do this by checking whether the bus is close to 
the bus stop, where closeness corresponds to the bus being 
within 100 m from the stop.

(1)a = sin2(��∕2) + cos�1 ∗ cos�2 ∗ sin2(�∕2)

(2)c =2 ∗ atan2(
√
a,
√
1 − a)

(3)d =R ∗ c

Fig. 2   An overview of bus 
arrival prediction

Table 1   Datasets used for our study

Data points

TTC real time data 700,000
GTFS bus stop schedule data 18,110
GTFS bus stop location data 24
Weather data 3624

Algorithm 1: Calculating the Actual Arrival Time of a Bus
Input: GPSTime: Reported time for the GPS location of the bus, ScheduledTime:
Scheduled arrival time of the bus at the stop

Output: ActualTime: Actual arrival time of a bus at a stop
Let d = Distance between the bus and the stop using the Harvsine distance equation;
Let min = ∞
while GPSTime ≤ ScheduledT ime+ 25 minutes OR GPSTime ≥
ScheduledT ime− 25 minutes do

Calculate d;
if d ≤ min then

min = d
if d is within 100m of the stop then

ActualTime = GPSTime for the bus of d
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Figure 3 illustrates how we calculate the difference 
between the actual and the scheduled arrival times of a 
bus at a particular bus stop. Let bt denote the GPS location 
of the bus, t denote the time when the bus was at location 
bt , and St denote the bus stop location. Since we capture 
GPS locations for the bus every 20 s, we may encounter a 
large number of GPS locations around a particular bus stop 
during the scheduled arrival time for the bus.

To determine whether the bus arrives on time, we use 
the GPS locations of the bus that are reported within a 50 
min window from its scheduled arrival at the bus stop St 
(i.e. 25 min before and 25 min after the scheduled arrival 
time). Then, we choose the closest bus location to the bus 
stop within that time window, for example, bt5 in Fig. 3. 
The next step is to check if that GPS location is within the 
vicinity of the bus stop (i.e., we check if bt5 is within 100 
m distance from the bus stop). Algorithm 1 summarizes 
this process.

After estimating the actual arrival time of buses at a 
particular bus stops, we calculate the difference between 
the actual and scheduled arrival times. Equation 4 calcu-
lates the actual time difference between scheduled arrival 
time and actual arrival time.

In a similar way, Equation  5 calculates the difference 
between scheduled arrival time and predicted arrival time.

If the difference is less than zero the bus arrived late and if 
the difference is greater than zero the bus arrived early.

After preprocessing the data, we conducted a preliminary 
analysis on the collected bus arrival data. We found that in 
more than 37% of the time the buses on these routes were 
either delayed more than 5 min or arrived early by more than 
5 min (see Fig. 4). In some cases the delay was more than 20 
min. During the period of our study, the scheduled arrival 
times did not change, i.e., the schedules did not get updated 
by TTC. Therefore, we can consider that our models predict 
the arrival times. However, we used the two formulas in Eqs. 
(4) and (5) for prediction because we were interested in the 
delays and early arrivals.

(4)
Differenceactual = ScheduleArrivaltime − ActualArrivaltime

(5)
Differencepredicted = ScheduleArrivaltime − PredictedArrivaltime

4 � Machine learning models

This section discusses the machine learning models that 
we used for predicting the arrival time of buses on selected 
routes. In particular, we use regression models to estimate 
the amount of time that a given bus deviates from its sched-
ule. Given historical arrival times at a stop s, our models 
predict the next arrival time at stop s + 1.

In our study, we use four baselines to which we compare 
our model’s results: SVR, ANN, ARIMA and Historical 
Average. 

1.	 Support Vector Regression (SVR): SVR (Drucker 
et al. 1997) is an extension of the basic support vector 
machines (SVM) (Boser et al. 1992). In linear regression 
models, the error rate is minimized, whereas in SVR 
models, the error is fit within a certain threshold. The 
model that emerges from SVR is the hyperplane that 
separates a maximum number of data points.

2.	 Artificial Neural Network (ANN): (Zhang and Qi 2005): 
is a network of interconnected neurons, inspired by stud-
ies of biological nervous systems (Zhang and Qi 2005; 
Tan et al. 2005). Neurons are simple information pro-
cessing units. For time-series analysis, inputs to an ANN 
model are observations from previous time-steps and the 
output corresponds to the predicted observation at the 
next time-step (Zhang and Qi 2005). The information 

Fig. 3   Calculating actual arrival 
of bus at a bus stop

Fig. 4   Distribution of the difference between actual arrival time and 
scheduled arrival time, 20% of the buses are delayed more than 5 min 
and 17% of the buses arrive early more than 5 min
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received from the input nodes is processed by hidden 
layer units along with appropriate activation functions 
to determine the output.

3.	 ARIMA: ARIMA stands for Autoregressive Integrated 
Moving Average models. ARIMA is a mature time 
series prediction model based on statistics. For time 
series data, ARIMA predicts future values of the data 
entirely based on the previous data points in the series.

4.	 Historical average: Historical averages are the mean 
arrival time for bus trips. Historical averages are used as 
a common reference point to compare the performance 
of different machine learning models.

4.1 � Long short‑term memory (LSTM) recurrent 
neural networks

In Fig. 5, we show in a single LSTM cell structure how 
LSTM recurrent neural network maintains long term 
dependencies.

The LSTM architecture contains series of connected 
cells. Each LSTM cell consists of a special unit called a 
memory block in the recurrent hidden layer. The memory 
blocks have connections that provides necessary informa-
tion to maintain temporal state of the network. LSTM cell 
has three gates: Input gate, Output gate and Forget gate. 
Input gate control the flow of input information provided 
to the LSTM cell. Output cell controls the output flow of 
cell activations into the rest of the network. Unlike conven-
tional RNN, LSTM recurrent neural network has a separate 
forget gate which makes it more suitable for time-series 
analysis. The forget gate decides which information is rel-
evant for the prediction task and removes irrelevant infor-
mation. These gates together provides the overall memory 
function for LSTM recurrent neural networks.

Following an iterative process, the LSTM model estab-
lishes a mapping between an input sequence and the irreg-
ularity in arrival time (output) from the training set. Below 
are the equations for the LSTM neural network:

(6)Input Gate ∶ it =�(Wxixt +Whiht−1 +WciCt−1 + bi)

At time interval t, � is the element-wise sigmoid function 
1

1+exp(−x)
 and tanh represents the hyperbolic tangent function 

exp(x)−exp(−x)

exp(x)+exp)(−x)
.

it , ft and ot are the input, forget and output gate states 
respectively, and Ct is the cell input state.

xt is input and bi , bf  , bo and bC are the bias terms.
Wxi , Whi and Wci are the weight matrices for the input 

gate. Wxf  , Whf  and Wcf  are weight matrices for forget gate.
Wxo , Who and Wco are the weight matrices corresponding 

to output gate. Whi , Whf  , Whc , Who are the weight matrices 
connecting ht1 to the three gates.

The current cell state Ct is generated by calculating the 
weighted sum of the previous cell state and the current cell 
state.

The LSTM Recurrent Neural Network has the ability to 
remove or add relevant information to the cell state, this is 
because cell state is adjusted by input gate and forget gate. 
The forget gate layer removes the irrelevant information 
from the cell state. It uses ht−1 and xt , and outputs a number 
between 0 and 1 for each input in the sequence in the pre-
vious cell state Ct−1 . If the number is zero, no information 
passes through the gate. If the number is one, all the infor-
mation passes through the forget gate.

Similarly, Input gate decides what new information will 
be stored to the cell state. The final output is based on the 
cell state of LSTM network. As explained above, the current 
cell state depends on the previous cell state. Therefore, the 
previous cell state is taken into consideration when updating 
the weights of the LSTM cell. This is how LSTM cell is able 
to maintain long term dependencies for predictions. LSTM 
Recurrent Neural Networks has shown promising results in 
solving complex machine learning tasks (Sutskever et al. 
2014).

4.2 � Recurrent neural networks for the weather 
feature

(7)Forget Gate ∶ ft =�(Wxf xt +Whf ht−1 +WcfCt−1 + bf )

(8)
Cell Input ∶ Ct =ftCt−1 + it tanh(WxCxt +WhCht−1 + bC)

(9)Output Gate ∶ ot =�(Wxoxt +Whoht − 1 +WcoCt + bo)

(10)hidden layer output ∶ ht =ot tanh(Ct),

(11)InputData =

⎛
⎜⎜⎜⎜⎝

T1
t0
W1

t0
T1
t1
W1

t1
W1

t2

⋮

⋮

Tn
t0
Wn

t0
Tn
t1
Wn

t1
Wn

t2

⎞⎟⎟⎟⎟⎠
Fig. 5   LSTM cell structure
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Since weather condition has significant impact on the 
prediction results, we decided to create a Recurrent Neural 
Network (RNN) model that focuses on the weather feature. 
The output of this model is combined with the LSTM model 
discussed in the previous subsection to increase the accuracy 

(12)TargetData =

⎛
⎜⎜⎜⎜⎝

T1
t0

⋮

⋮

Tn
t0

⎞
⎟⎟⎟⎟⎠

of prediction. The RNN model takes as input the arrival 
times and weather readings at the current stop and at the 
previous stop to predict the arrival time at the next stop when 
the weather reading is known.

In this model, a window of three is chosen for arrival 
times T and weathers W. Inputs that are shown in Eq. 11, 
are divided to three categories X1 (previous bus stop), X2 
(current bus stop) and X3 (next bus stop). These inputs are 
illustrated graphically in Fig. 6. X1 is comprised of T1

t0
 and 

W1
t0
 for n samples. Similarly, X2 is comprised of n arrival 

times and weather readings. The third input, X3 only takes 
weather readings. Equation 12 shows the predicted arrival 
times for the next bus stop. Figure 6 illustrates the archi-
tecture of our RNN model. Two hidden layers, h1 and h2 
are set in the diagram with different matrix sizes. The 
inputs go to h1 with the batch size of 32. After processing 
in h1 , the results will be transferred to h2 in different for-
mats. In h2 , the result of processing X1 will be sent to a 
matrix of 1×16 and will be concatenated with the result of 
processing X2 , which is sent to a matrix size of 1x32. Simi-
larly, the output of processing X3 goes to a matrix of size 
1×16 in h2 . Then all results of h2 are concatenated together. 
Finally, the sigmoid function is applied in the last layer 
which provides the arrival time prediction.

4.3 � Data preprocessing and normalization

Table 2 summarizes the list of features used in our mod-
els. We have flattened the data, i.e., we augment the bus 
trip travelling southbound with the next trip for the same 
bus travelling northbound. The first feature (time diff) is 

Fig. 6   RNN architecture

Table 2   Features used for 
model building

Feature name Description

time diff Difference between actual arrival time and scheduled arrival time. This is vari-
able which we are trying to predict

Tag Specifies the direction on which bus is heading
Trip.ID A unique number given to each trip
Stop sequence Assigned sequence numbers starting from 1 to each bus stop in the route
Distance traveled Cumulative distance travelled by the bus to reach the bus stop
routeTag A unique numeric code to identify a particular route on which the bus is traveling
Stop ID A unique numeric code to identify a particular bus stop
Bus ID A unique numeric code to identify a particular bus
Service class Weekday, Saturday and Sunday
Day of the week Numerical number indicating day of the week (1-Sunday, 2-Monday..etc)
Hour Numerical number indicating hour of the day
Max temperature Maximum temperature in the hour
Min temperature Minimum temperature in the hour
Visibility Visibility in Km, i.e., how far the driver is able to see
Weather condition Weather conditions: rain, snow, fog or haze
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calculated using live GPS locations and the TTC schedules 
data as discussed in the previous section. The last four 
features are obtained from the weather data. The rest of the 
features are obtained from the live bus stop locations data.

Before a machine learning model is trained, all features 
are converted into a vector representation (e.g., the cate-
gorical features). There are two ways to convert a categori-
cal feature into a vector representation; one-hot Encoding 
and Label Encoding (Tan et al. 2005). 

1.	 One-Hot Encoding: Encodes a categorical features as a 
one-hot numeric vector, i.e., it creates binary column for 
each category and returns a sparse matrix, where only 
the entry at the row representing the category is assigned 
a 1, with the remaining entries assigned 0, creating a 
sparse vector.

2.	 Label Encoding: Transforms categorical features to 
numerical features by assigning each categorical feature 
a unique number which can be normalized before using 
it as an input for machine learning model.

We have two categorical features, tag and weather condi-
tions. Tag was converted using one-hot Encoding because it 
only has two categories (North and South). Weather condi-
tions was converted using Label Encoding. Other features in 
our data do not require encoding because they are continu-
ous variables.

After converting all the features into a vector representa-
tion, data was normalized using the following equation:

In Eq. 13, xi is the ith observation of a feature and zi is the 
ith normalized data point.

4.4 � Model training in LSTM

The input to each LSTM cells is a 3-dimensional (3D) 
matrix. The following discusses briefly each dimension: 

1.	 Sample size: sample size refers to how many rows are 
given as an input to the model. In this study we used a 
sample size of 32.

2.	 Time Steps: time step is one point of observation in the 
sample. The number of steps determines steps ahead in 
time the model will predict. We used one, two, three, 
and four time steps in our model.

3.	 Features: The detailed explanation of each feature used 
is discussed in Table 2. Our model uses the time diff fea-
ture as a dependent feature (output of the model), which 
specifies the difference between scheduled arrival time and 
actual arrival time of bus from previous time stamp. We 

(13)zi =
xi − min(x)

max(x) − min(x)

use 11 independent features as input to model, Trip.ID, 
Tag, Stop.sequence, distance travelled, maximum temper-
ature, minimum temperature, visibility, hour, day of week, 
service class, weather conditions as inputs to the model. 
A unique property of Neural Networks is that the when 
the model adjusts the weights, it can reduce the effect of 
the irrelevant features while training by assigning them 
low weights. These features can still have a small nega-
tive influence on the model which can decrease its overall 
accuracy. Only features which gave us the highest accuracy 
were used in the final model. We did an ablation study, by 
removing one feature at a time and calculating the error 
rate of the model. From Table 2, we found that Stop ID 
and Bus ID to be insignificant to our model. Therefore, 
we excluded them from our model. Other features showed 
significant impact on the accuracy of the model.

In our LSTM model architecture, we use 12 input neu-
rons, this represents the number of features (11 independ-
ent features and 1 dependent feature) in our dataset used 
for modeling. The number of neurons used in the output 
layer is 1 which specifies the difference between predicted 
arrival and scheduled arrival times (i.e., delay or early 
arrivals) for a bus at a stop. We tried different variations of 
LSTM hidden layers and tried different number of LSTM 
cells within each layer. For the final model selection, we 
choose 1 hidden layer with 100 LSTM cells with ’ReLU’ 
(Goodfellow et al. 2016) activation function.

When the LSTM model starts training, a sequence of 3D 
samples (3D tuple) is given to an LSTM layer. The values 
of a sequence are (32, 1, 12). This means, in one iteration, 
the model runs 32 samples (batch size), to predict 1 time 
step ahead, using 12 input features (11 independent input 
features discussed previously and the previous reading for 
the dependent feature, i.e. time diff). In the next model 
iteration each sample will carry the cell state (weights) 
and a forget gate. Forget gate controls how much from the 
current cell state is passed to next cell, thus, ensuring that 
model can learn longer sequences.

When training neural networks, several decisions need 
to be made regarding the choice of hyperparameters used 
by the model. We chose the following hyperparameters 
for our model: 

1.	 Activation functions: are non-linear mathematical functions 
used to combine the output of neurons at one layer for the 
next layer. They are important for a neural network model 
as they introduce non-linear properties to the model.

	   We experimented with different activation functions, 
such as, linear, sigmoid and ReLU, for our final model 
we used ReLU activation function.
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2.	 Optimization algorithms: help to minimize (or maxi-
mize) an error function, and they are used to compute 
the output in such a way that it is computationally less 
expensive and the model converges to the global minima 
rather than a local minima. We investigated RMSprop 
and ADAM optimizers. For the final model we used 
ADAM optimizer.

3.	 Epochs: specify how many full passes of the data set 
(epochs) should be used during training. If we use too 
few epochs, we may underfit the model and do not allow 
it to learn everything it can from the training data. If we 
use too many epochs, we may overfit the model, which 
leads to introducing noise to the model.

4.	 Early stopping: early stopping is a regularization method 
used to prevent the model from over-fitting. Early stop-
ping is used to remove the need to manually adjust the 
value of epochs while training a model. When the error 
rate of the model stops decreasing it automatically stops 
model from training. Another method for regularization 
is called dropout (Srivastava et al. 2014), we found that 
Early Stopping works best for our model.

5.	 Batch size: batch size is the number of samples that will 
be propagated through the network in one iteration. A 
batch size can be either less than or equal to the total num-
ber of training samples. Advantages of using a small batch 
size is that it requires less memory for training. A small 
batch size also reduces the overall training time required 
by the model, which important when working with large 
datasets because it is not possible to fit all of the data 
into memory at once. However, if the batch size is too 
small, it can lead to less accurate models because we are 
not providing sufficient number of samples to the model, 
which leads to less accurate estimate of the output.

Table 3 shows different configurations of LSTM model that 
we tried in our experiments. For our final model, we used 
one hidden layer with 100 cells and one dimensional output 

representing the next arrival time. This configuration provides 
the best performance for both Route 28 and Route 8.

5 � Results/model performance

To measure the performance of our models, we calculate its 
Mean Absolute Percentage Error (MAPE) and the Root Mean 
Square Error (RMSE) on the testing data. All models were 
trained ten times and the average of MAPE and RMSE error 
rates were considered as the final value for the models.

The equation for these performance measures are defined 
as follows:

Where yt is the actual value and xt is the predicted value. In 
our case, yt is the difference of scheduled arrival time and 
actual arrival time, xt is the difference between scheduled 
arrival time and predicted arrival time, and n is the number 
of samples.

Table 4 shows the MAPE and RMSE values for different 
models for Route 28. The LSTM model substantially outper-
formed other models. It shows a 7 fold reduction in MAPE 
over historical average. A possible reason that LSTM model 

MAPE =

n�
t=1

����
yt − xt

yt

����

RMSE =

�∑n

t=1
(yt − xt)

2

n

Table 3   Model tuning for 
LSTM

Bold values indicate that the final values used in the experiments

Activation Layers Cells Batch size Rote 28 Rote 8

RMSE MAPE RMSE MAPE

ReLU 1 10 32 433.15 0.2 284.77 0.44
ReLU 1 50 32 427.87 0.14 277.97 0.45
ReLU 1 100 32 422.22 0.13 269.49 0.36
Linear 1 50 32 426.56 0.17 283.58 0.55
Linear 1 100 32 425.52 0.16 276.74 0.45
ReLU 1 100 64 426.24 0.23 275.76 0.41
Sigmoid 1 100 32 433.58 0.25 279.62 0.4
ReLU 3 40,80,40 32 427.68 0.31 283.56 0.54
ReLU 3 40,80,40 64 427.77 0.28 283.75 0.54
ReLU 2 40,40 64 431.50 0.2 279.32 0.5

Table 4   Comparison of different models for Route 28

Bold values indicate that the final values used in the experiments

Historical average ARIMA SVR ANN LSTM

MAPE 0.91 0.80 0.68 0.30 0.13
RMSE 477.87 432.69 428.79 427.33 422.2
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performs better than other models is because it may account 
more directly to the long term dependencies between input 
and output features. LSTM model also was best performing 
for Route 8 as shown in Table 5.

We observe that the RMSE value for LSTM model is 
not substantially lower than the baseline models. RMSE is 
sensitive to large outlying errors which occurred in our data, 
and performs best when errors follow a normal distribution 
(Chai and Draxler 2014). Chai and Draxler (2014) suggest 
to remove the outliers that are larger than other errors by 
several orders of magnitude. However, we did not need to 

remove outliers, i.e., extreme irregularities, because MAPE 
clearly showed LSTM model outperforms other models, and 
the RMSE value for LSTM model is lower than all other 
baseline models. In addition, we were interested to see the 
impact of weather on extreme irregularities. In the next sub-
section, we investigate the performance of LSTM model 
with and without the weather data.

5.1 � Significance of the weather data

We investigated the impact of the weather data on the accu-
racy of our prediction models. When we ran our models with 
weather data features (i.e., when we included the following 
features: maximum temperature, minimum temperature, 
visibility and weather conditions), we noticed significant 
improvement in the results (see Table 6 for Route 28 and 
Table 7 for Route 8).

Figure 7 compares the actual arrival time versus predicted 
arrival time with and without using weather data for Route 
28. The x-axis shows the ordered observations of bus arriv-
als at stops. As mentioned previously, we augment the bus 
trip travelling on a direction with the next trip for the same 
bus travelling the opposite direction. This means the x-axis 
depicts the arrival of the bus at the first stop, followed by 
its arrival at the next stop. When the bus arrives at the last 
stop, it returns back on the same route. The next observation 
after the last stop would be next arrival of the same bus at 
the stop before the last stop. The y-axis is time in seconds. 
It can be observed from the plot that the model created with 
the weather data has better accuracy than the model that was 
created without the weather data. In particular, we notice 
that the model that was created using weather data was able 
to capture extreme delays and early arrivals better than the 
model that was created without the weather data. We notice 
similar trend for Route 8 (see Fig. 8).

Furthermore, we compared the results of LSTM mod-
els for different portions of the data. We observed that 

Table 5   Comparison of different models for Route 8

Bold values indicate that the final values used in the experiments

Historical average ARIMA SVR ANN LSTM

MAPE 0.92 0.84 0.76 0.49 0.36
RMSE 292.38 286.64 279.01 278.69 269.49

Table 6   Comparison of models with and without weather data for 
Route 28

Bold values indicate that the final values used in the experiments

LSTM without weather 
data

LSTM with weather data

MAPE 0.21 0.13
RMSE 427.02 422.2

Table 7   Comparison of models with and without weather data for 
Route 8

Bold values indicate that the final values used in the experiments

LSTM without weather 
data

LSTM with weather 
data

MAPE 0.43 0.36
RMSE 279.11 269.49

Fig. 7   Model performance of LSTM Model with and without weather data on Route 28
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for 16% of the data, the model with the weather data has 
much higher prediction accuracy when compared to the 
model created without the weather data (see Table 8). The 
model accuracy improves with weather by 310% when we 
compare RMSE and by 282% when we compare MAPE. 
Table 8 clearly demonstrates that weather plays a signifi-
cant impact on the prediction accuracy for nearly half of 
the data (49%). We observed similar results for Route 8, 
where weather had higher impact (for nearly half of the 
data, the model accuracy improved by more than 150% 
as shown in Table 9). The impact of weather decreases as 
we see more data points because additional factors may 
also contribute to bus arrival prediction, suggesting that 
weather has complex non-linear relationship with bus 
arrival times. Examples of these factors are traffic condi-
tions, construction zones, emergency vehicles, number of 

passengers which we are planning to explore in future. 
However, we will mitigate this issue by modelling weather 
and arrival times in a separate RNN model as explained 
by end of this section.

To investigate further how much impact an individual 
weather feature has on the model, we created three LSTM 
models by just removing one feature and keep other features. 

Fig. 8   Model performance of LSTM Model with and without weather data on Route 8

Table 8   Difference in RMSE 
and MAPE of with and without 
the weather data for Route 28

Bold values indicate that the final values used in the experiments

% Data RMSE MAPE

Weather No Weather % Weather No Weather %

16% 10.75 44.12 310% 9 34.4 282%
33% 20.94 42.74 104% 20.3 39.5 95%
49% 34.27 47.56 39% 34.1 50.5 48%
66% 55.63 62.12 11% 47 63.2 34%
82% 116.13 117.72 1.3% 61.58 72.97 18%

Table 9   Difference in RMSE 
and MAPE of with and without 
the weather data for Route 8

Bold values indicate that the final values used in the experiments

% Data RMSE MAPE

Weather No Weather %RMSE Weather No Weather %MAPE

16% 4.85 36.91 661% 4.5 34.2 660%
33% 9.25 35.86 288% 9.7 37 281%
49% 14.32 36.66 156% 16.36 41.5 154%
66% 22.98 37.49 63% 21.4 48.2 100%
82% 30.41 41.04 35% 39.47 62.08 57%

Table 10   Comparison of models with different features for Route 28

Bold values indicate that the final values used in the experiments

Visibility Weather 
conditions

Temperature All weather 
features

MAPE 0.17 0.15 0.18 0.13
RMSE 424.76 423.65 425.08 422.2
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The first model removes visibility, the second model removes 
weather conditions (rain, snow, haze, fog), and the third model 
removes temperature. Table 10 shows the comparison of dif-
ferent LSTM models as we remove different features from the 
model for Route 28. The MAPE value increases from 0.13 to 
0.17 when we remove visibility feature from the model. Simi-
larly, when we keep all the other features except the weather 
conditions the MAPE value increases to 0.15. Removing tem-
perature increases the MAPE value to 0.18. Similar observa-
tions were found for Route 8 (see Table 11). These results 
suggest that all weather features that we use in our models are 
important to achieve better prediction accuracy.

5.2 � Multi‑stop forecasting models

Apart from comparing different machine learning models, 
we also compared the accuracy of the LSTM model in pre-
dicting irregularities for multiple future stops in a trip (i.e., 
predicting the delay/early arrivals for the future arrivals of 
the bus after its immediate next scheduled arrival).

We created 4 different models: ( s + 1 , s + 2 , s + 3 , s + 4 ). 
The first model was discussed througout the paper and pre-
dicts one stop ahead in time (i.e., given the historical arrival 
times and weather data for stop s, it predicts the irregulari-
ties for the next scheduled bus arrival at the next stop s + 1 ). 
The second model predicts the irregularities for the bus 
arrival at stop s + 2 . Similarly the third and fourth models 
predict irregularities for the bus arrival at stop s + 3 and 
s + 4 , respectively. Figures 9 and 10 show the comparison 
between the MAPE% errors when predicting irregularities 
for multiple stops with and without the weather data.

It is clear from Figs. 9 and 10 that the model performance 
decreases as we predict for multiple future stops ahead in 
time. This is similar to the findings by (Duan et al. 2016), 
(Hua et al. 2018) and (Kormáksson et al. 2014)). However, 
we found that when weather data was excluded (the dotted 
lines), the rate of decrease in prediction accuracy increases 
as we predict for more future stops. This suggests that 
weather plays a significant role when predicting arrival times 
or their irregularities for multiple future stops.

5.3 � Modelling weather feature with RNN model

Since the previous experiments clearly established that 
weather has a significance influence on the prediction 
results, we decided to use this feature in a separate RNN 
model and combine the result with the LSTM model (which 
also included the weather features as discussed previously). 
The final prediction is the average of the two models. The 
architecture of the RNN model was discussed in Sect. 4. 
Our motivation was to investigate whether we can improve 
the prediction accuracy if we create a model dedicated to 
the weather. We tested and trained the RNN model with dif-
ferent hyper parameters and finally we have tuned the hyper 
parameters as follow:

–	 learning rate = 0.001
–	 training epochs = 300
–	 batch size = 32
–	 display step = 1

Table 12 compares the performance of this model with the 
LSTM model for route 28. The RMSE of our new hybrid 
model showed improvement of 562.38% over the LSTM 
model for route 28 for 82% of the data. For route 8, the 
improvement was 873.85% as shown in Table 13. We also 
noticed that the accuracy does not decrease when we add 
more data to the model, contrast to the findings in Sect. 5.1. 
This could be because the RNN model focuses on the 
weather features, while the LSTM model includes other 

Table 11   Comparison of models with different weather features for 
Route 8

Visibility Weather 
conditions

Temperature All weather 
features

MAPE 0.42 0.40 0.42 0.36
RMSE 278.30 278.43 281.51 269.49

Fig. 9   Prediction accuracy with and without weather features for mul-
tiple stops for Route 28

Fig. 10   Prediction accuracy with and without weather features for 
multiple stops for Route 8
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features along with the weather. In other words, in small 
portion of the data, weather condition played a significant 
role in improving the prediction results in the LSTM model. 
However, when a separate RNN model is used for weather, 
its role to improve accuracy included larger segments of the 
data.

6 � Conclusion

Nowadays, complex machine learning algorithms can be 
applied quickly over large datasets, thanks to the advances 
in the area of big data analytics. This paper investigates 
different prediction model for irregularities in bus arrival 
times, using machine learning algorithms. In particular, 
we built Long Short-Term Memory Recurrent Neural 
Network models to predict the next arrival time for a bus 
at a particular stop. Our prediction models use historical 
bus arrival data, i.e. real time GPS locations for Toronto 
Transit buses, bus schedules obtained from a Google API, 
and weather condition data obtained from a weather sta-
tion in Toronto. Our analysis show that Toronto transit 
buses experience significant irregularities in arrival times. 
In nearly 37% of times, transit buses are either delayed or 
arrive early by more than 5 min, showing great room for 
improvement. To our knowledge, this is the first work to 
investigate the impact of weather on bus arrival prediction. 
We found that weather plays a significant role improv-
ing prediction accuracy. Therefore, we built a prediction 
model that combines two machine learning models: an 

LSTM model that focuses on a range of input features, 
e.g. arrival times and hour of the day, and an RNN model 
which focuses on the weather features. We also investi-
gated prediction accuracy for multiple scheduled arrival 
of buses ahead in time using weather data. In future, we 
plan collect more data in order to run our experiments over 
the entire year. Our current study covers the Winter season 
and the beginning of the Spring season in Toronto. We 
plan to extend our study to cover all weather seasons. In 
addition, we plan to extend our work on bus arrival predic-
tion by using machine learning algorithms with additional 
datasets, such as passenger count and traffic condition. 
Furthermore, we plan to use different RNN extensions, 
such as the Gated Recurrent Unit (GRU) (Cho et al. 2014; 
Che et al. 2016).
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