
Predicting customer’s gender and age 
depending on mobile phone data
Ibrahim Mousa Al‑Zuabi* , Assef Jafar and Kadan Aljoumaa

Introduction
Nowadays, the mobile phone is one of the fastest growing technologies in the develop-
ing world with global penetration rates reaching 90% [1]. This makes it a huge ware-
house for customer’s data. That is, every action taken by the customer (short message 
service (SMS), Call or Internet session) gets recorded within the telecom operator, in the 
so called (CDRs). There are many types of CDRs used mainly by telecom billing systems. 
CDR contains a lot of information, (type of event, who is involved in this event, date-
time, cell identifier where this event has taken place). This raw data represents a valu-
able source for analyzing human and social behavior [2]. In the agricultural domain [3] 
mobile phone data is used to analyze mobility and seasonal activity patterns related to 
livelihood zones in Senegal, by creating mobility profiles for population and segmenta-
tion. While in energy domain [4] this data is used to analyze human activity, facilitate 
population growth estimation in rural areas and extrapolate electricity needs. In health 
sector [5, 6] mobile phone data is used to study the relation between human mobility 

Abstract 

In the age of data driven solution, the customer demographic attributes, such as 
gender and age, play a core role that may enable companies to enhance the offers of 
their services and target the right customer in the right time and place. In the market‑
ing campaign, the companies want to target the real user of the GSM (global system 
for mobile communications), not the line owner. Where sometimes they may not be 
the same. This work proposes a method that predicts users’ gender and age based on 
their behavior, services and contract information. We used call detail records (CDRs), 
customer relationship management (CRM) and billing information as a data source to 
analyze telecom customer behavior, and applied different types of machine learning 
algorithms to provide marketing campaigns with more accurate information about 
customer demographic attributes. This model is built using reliable data set of 18,000 
users provided by SyriaTel Telecom Company, for training and testing. The model 
applied by using big data technology and achieved 85.6% accuracy in terms of user 
gender prediction and 65.5% of user age prediction. The main contribution of this 
work is the improvement in the accuracy in terms of user gender prediction and user 
age prediction based on mobile phone data and end‑to‑end solution that approaches 
customer data from multiple aspects in the telecom domain.

Keywords: Gender prediction, Age prediction, Customer behavior, Machine learning, 
Big data, Classification, CDR

Open Access

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

RESEARCH

Al‑Zuabi et al. J Big Data            (2019) 6:18  
https://doi.org/10.1186/s40537‑019‑0180‑9

*Correspondence:   
ibrahim.alzuabi@hiast.edu.sy 
Faculty of Information 
Technology, Higher Institute 
for Applied Sciences 
and Technology, Damascus, 
Syria

http://orcid.org/0000-0002-1347-5609
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-019-0180-9&domain=pdf
16132
Highlight

16132
Highlight



Page 2 of 16Al‑Zuabi et al. J Big Data            (2019) 6:18 

and prevalence of a disease using mobile data. This data could be used to analyze human 
behavior and compute psychology-informed indicators to predict customer’s personality 
[7]. Telecom industry is a fertile ground for many challenges that benefit mobile opera-
tors to improve their business and competition advantages in different domains. There 
are two major big data uses cases in the telecom domain:

Network improvement

Operators have always been concerned about network performance improvement. 
Resulting from using big data analytics, operators can identify troubles combined with 
root cause analysis [8], improve quality of experience (QoE) [9], perform real-time trou-
bleshooting and fix network performance issues.

All kinds of self-organizing network (SON) automation such as provisioning, config-
uring and commissioning can be convenient to the traffic request and the changes in 
the environment based on the acumen gained from big data analytics [10]. It allows the 
operators prioritize the alarms which is very useful to save time and prevent service fail-
ure [11].

Marketing, sales and customer loyalty

Marketing and sales are considered the largest domain of big data usage in telecom 
industry. Suitable big data analytics allows the operators to create more intelligent mar-
keting campaigns based on customer profiling and segmentation [12], and do sales ana-
lytics to improve the sales. It can also be utilized to get better results from marketing 
promotions, increase revenue and implement geo marketing and real-time marketing. 
For example, Globe Telecom (Telecommunications Company in the Philippines) uses 
big data analytics to improve effectiveness of promotions by 600% [13].

Attracting a new customer costs much more than keeping an existing one, so churn 
prediction and management have become a matter of great concern to mobile service 
providers. A mobile service provider wishing to retain their subscribers needs to be able 
to predict which of them may be at-risk of changing the operator [14].

In this research we propose a solution to solve a real problem in telecom operator. 
The problem being, telecom operators sometimes suffer from unreliable demographic 
data of their customers. This research introduces a solution, which employs different 
domains, like big data science, telecom, social strategies for gender and age prediction, 
as well as a comparison of machine learning methods and results. We worked with an 
end-to-end solution starting from data acquisition closed with web applications as user 
interface and with Infographic visualization such as maps and interactive querying data 
through query builder interface, including all related data processing such as extracting, 
loading and transforming (ELT) processes.

The rest of the paper is structured as follows: In “Related work” section, we present 
related works on user demographic prediction. “Methods” section describes the data set 
we used in this research as well as the feature extraction methods and Big Data life cycle. 
“Results and discussion” section, we describe our results on gender, age and evaluate our 
approach in real-world case study, also we present proposed framework. Finally, we con-
clude our work and describe future work in “Conclusion” section.

16132
Highlight



Page 3 of 16Al‑Zuabi et al. J Big Data            (2019) 6:18 

Related work
Several works discussed gender and age identification in different domains with different 
methods, for example: in [15] twitter data is used to predict user demographic based on 
users’ first name, or based on twitter pictures in [16], or based on text mining and analy-
sis [17]. Whereas user demographics data can be predicted based on created features 
from browsing behavior [18]. However, the number of mobile users exceeds the number 
of social networks users, therefore many studies discussed predicting user demograph-
ics based on users’ smartphone applications [19, 20]. Most of works that predict user 
demographic based on mobile phone data, also called CDR, relied on large training set 
to predict demographics. Felbo [2] has addressed advanced methodologies in machine 
learning and used deep learning algorithms to benefit from its efficiency in large dimen-
sions features and let these algorithms do its job with feature engineering instead of 
hand-engineered features. However, large data set is used to train the model, that is the 
data set relied on 1,50,000 customers and contains more than 250 million records, with 
accuracy of 79% for identifying gender and 63.1% for age. Sarraute et al. [21] used data 
set containing 5,00,000 customers to extract behavioral and social network features of 
the user, and used principal component analysis (PCA) method to select the important 
features. The best accuracy achieved was 81.4% for predicting gender and 62.3% for 
predicting age. While Dong et al. [22] relied on social features of the customer (Degree 
Centrality, Triadic Closure, ...) by studying call network and messaging network, and 
using double-dependent factor graph model to predict gender and age in a mobile phone 
social graph, and the results were: 0.8063 for predicting gender and 0.7132 for predicting 
age, using F1-Measure. Martinez et al. used small size of reliable data set, with 10,000 
users, and by using multiple algorithms (SVM, Random Forest and K-means) the accu-
racy obtained was 80% when the percentage of predicted instances was reduced [23]. In 
[1] bandicoot1 tool is used to extract more than 1400 behavioral features, with different 
categories, and tested those features with different algorithms such as random forest, 
SVM, KNN, and the accuracy of the model was 79.7% at best for predicting the gender at 
developing countries as in South Asia.

In this work we have focused on extracting suitable and dedicated features for Syr-
ian society also, we extract features from multiple resources like customer services and 
contract.

Methods
This section describes the data set used in this work as well as the feature extraction 
methods and big data life cycle.

Data description and preparation

Problem understanding and data understanding phases helped us to determine the data 
sources, and define the important ones to extract relevant features. Data lake was devel-
oped as a single point for all data. However, 5 data sources were selected for our predic-
tion models:

1 http://bandi coot.mit.edu.

http://bandicoot.mit.edu
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1 CDRs The CDRs data contain all actions that were taken by the customer with all 
their attributes. A data collector in the network switch captures the usage in the form 
of CDR. These raw CDRs are in turn converted by the mediation system into a for-
mat understandable by the Billing System. Table 1 shows sample of CDR fields: 

2 Customer’s services All services that the customer enrolled in have been collected 
and classified manually based on service type such as services related to political 
news, sports news and horoscopes, etc..., these categories are handled as customer 
features. As a result we got the table of customer’s service. Table 2 is a sample. 

3 Customers’ contract information The information of customer contract has been 
fetched from CRM system, it contains the basic information about the customer 
(gender, age, location...) and customer subscriptions’ information, as one customer 
may have more than one subscription (two or more GSMs) with different types of 
subscriptions: pre-paid, post-paid, 3G, 4G ... subscription.

4 Cells and sites database Telecom companies related data to sites, its components and 
operators are stored in relational database. This data is used to extract the spatial fea-
tures. Table 3 illustrates the shape of anonymized data for this data source. 

5 Reliable dataset Building such predictive system needs a sample, which contains the 
real demographics such as gender and age for each gsm in this sample, whatever the 
demographics of the gsm owner, because sometimes the real user and the gsm owner 

Table 1 CDR sample fields

Call type GSM (A) GSM (B) Direction Cell identifier Duration Date ...

Call +963********8 +963********5 Out C83 56s 10/10/2018 23:30:26 ...

Call +963********5 +963********8 In C203 56s 10/10/2018 23:30:26 ...

SMS +963********9 +963********3 Out C322 Null 10/10/2018 23:59:11 ...

SMS +963********3 +963********9 In C164 Null 10/10/2018 23:59:11 ...

... ... ... ... ... ... ... ...

Table 2 Sample of customer’s services

GSM Economy Education Health Horoscopes Technology Sport ...

+963********9 0 1 0 0 1 0 ...

+963********5 0 0 1 1 0 0 ...

+963********8 1 0 0 0 0 0 ...

+963********3 0 0 0 0 0 0 ...

... ... ... ... ... ... ... ...

Table 3 Sample of cells and sites database

Cell identifier Site identifier Longitude Latitude ...

C147 S73 **. ******2 **. ******7 ...

C23 S119 **. ******0 **. ******6 ...

C64 S14 **. ******1 **. ******0 ...

... ... ... ... ...
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are not the same. This reliable sample is used for supervised learning algorithms’ 
phases training and testing, however directed methods have been followed to collect 
data about more than 18,000 customers randomly, within about 6 months.

 The sample data used to build the model contains 64% males and 36% females. The 
data has been divided according to the age into groups. Each age group represents 
different age stage. And after model training, the system will predict the age group 
of the customer. Table 4 shows the age group with the percentage density of this cat-
egory within the sample: 

Feature extraction

Working on feature engineering and extraction were done based on our search and 
guess. Therefore in memory-processing tools is used for processing and analytical pur-
poses. However, 220 features extracted for each customer. These features are belonging 
to 6 features categories, each category is provided with examples (knowing that there are 
features which belong to more than one category).

• Behavioral individual features Average call duration per day, entropy of duration, 
standard deviation of outbound calls duration per day at daytime, average of dura-
tion of inbound calls per day at night, standard deviation of received SMS per day at 
worktime, etc. their number is about (200 features).

• Social behavior features: Number of contacts, entropy of contact, average transac-
tions received per customer, standard deviation of sent transactions per contact, etc. 
(20 features).

• Spatial and mobility features Average of mobility, average of mobility in holidays, 
home area type, night antenna entropy, daytime antenna entropy, workday antenna 
entropy, holiday antenna entropy, etc. their number is about (21 features).

• Temporal features Per workdays (Sunday to Thursday) and holidays, or per daytime 
(9–16) and at night: average number of SMSs received per daytime (17–8) in holi-
days, etc. (165 features).

• Types of services enrolled in: tech news services, educational services, sport news ser-
vices, political news services, entertainment services, etc., (13 features).

• Contract information tariff type, GSM type, (2 features).

The total number of the mentioned features is 421, but there are about 201 features 
belong to more than one category, so the total number of features is 220.

Feature extraction is a transformation of raw data into derived values suitable for 
modeling. All extracted features for gender and age model is belonging to one of two 

Table 4 Age groups of the sample

Age group Year range Percentage 
(%)

A 18–27 32

B 28–39 41

C 40–60 27



Page 6 of 16Al‑Zuabi et al. J Big Data            (2019) 6:18 

types of features, either statistical or categorical feature. The statistical functions we 
relied on to extract statistical features is:

• Probability: for example the feature “probability of SMS on holiday” calculated by 
the formula 

• Standard deviation: For example the feature “Standard deviation of call duration” 
calculated by the formula 

where N is the number of calls, xi is duration of call i and x̄ is the mean of calls 
duration.

• Percentage: For example the feature “percentage of customer transactions which is 
out of customer’s area home” calculated by the formula 

• Entropy is the sum of the probability of each feature value times the log probabil-
ity of that feature value. For example the feature “entropy of duration” calculated 
by the formula 

Those are the statistical features also, categorical features are used:

• Categorical features: That can take on one of a limited, and fixed number of pos-
sible values, the number of this type of features is 15. For example the feature “has 
economic news service” which is take one value either 0 or 1.

The demographic features of contract data source such as gender and age were 
excluded, because they are not reliable and we need to predict customer’s gender and 
age based on the behavior.

These features are the input for classification algorithms. however, the distributions 
of features among gender and age were studied at descriptive analysis phase, to gain 
more insight about customer’s behavior as Figs. 1 and 2 which illustrate samples of 
statistical studies on those features. 

(1)probability =
Total number of SMSs in holiday

Total number of SMSs

(2)s =

√

√

√

√

1

N − 1

N
∑

i=1

(xi − x̄)2

(3)percent =
number of transactions out of customer′s area home

Total number of transactions
∗ 100

(4)Entropy of duration = −

k
∑

i=1

Pi. log2(Pi)

(5)Pi =
Total durationwith contact i

Total durationwith all contacts



Page 7 of 16Al‑Zuabi et al. J Big Data            (2019) 6:18 

As the statistical studies, some features values vary from male to female and from age 
group to another.

Big data life cycle

This work includes different stages (data exploration, features extraction and selection, 
and model validation), however different machine learning methodologies is used:

• Unsupervised learning For detecting outliers and dimensionality reduction like 
k-means clustering and PCA.

• Supervised learning Mainly classification methods for predicting customer’s age and 
gender, therefore 12 of classification algorithms have been tested.

We have tested about 12 of the most popular classification algorithms. Regarding data 
acquisition and ELT process, we used multiple tools were used (Apache Flume,2 Apache 

Fig. 1 Sample of features distribution for each gender

2 https ://flume .apach e.org.

https://flume.apache.org
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Nifi,3 Apache sqoop4) to move the data, which have different sources and types (struc-
tured, semi-structured, streaming, and batches), from data sources and data lake to the 
big data platform. The data is stored within hadoop distributed file system (HDFS) [24] 
in the form of Apache Parquet storage format with Snappy compression for efficient 
storage and processing [25]. Extracting features from billions of CDRs’ records was han-
dled by Apache Spark [26], and the results were stored in Hadoop database HBASE5, in 
order to be retrieved from the web applications.

The implemented framework represents the data life cycle phases and big data pipe-
line as shown in (Fig. 3).

Fig. 2 Distribution of some predicted features for each age‑group

5 https ://hbase .apach e.org

3 https ://nifi.apach e.org.
4 http://sqoop .apach e.org.

https://hbase.apache.org
https://nifi.apache.org
http://sqoop.apache.org
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Results and discussion
The dataset has been analyzed to recognizes customer types through the extracted features, 
customers with abnormal behavior have been detected using k-Means clustering, like cus-
tomers having as average as more than 120 min of calls per day or having as average as 
more than 60 calls per day (later, we knew that their types of jobs explain their abnormal-
ity). Then, many classification algorithms were tested with extracted features. R language 
environment and its packages like caret and xgboost were used to preprocess those features 
and for modeling. The used preprocessing methods are:

• PCA: PCA with 10 and 100 principal components were tested, although it accelerated 
model’s execution due to dimensionality reduction, but it didn’t improve models results.

• Z-score, or standard score: Although it slightly improved SVM model, but it didn’t 
improved the best model we got which is xgboost.

 

(6)Z-score =
x − µ

σ

Fig. 3 Big data life cycle
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The following classification algorithms were tested: linear discriminant analysis 
(LDA), support vector machine [(SVM (with a radial basis)], extreme gradient boost-
ing (XGBoost), random forest, logistic regression, GLMNET, KNN, Naive Bayes, 
CART, C5.0, gradient boosting machine (GBM) and Bagged CART, however the best 
model is selected based on evaluation results.

For models training and validation, the reliable dataset was divided into (80%–20%). 
All classification algorithms have been trained using 10-fold cross validation, and 
relied on below metrics for model evaluation:

• Accuracy The number of correct predictions made is divided by the total number 
of predictions made. It is calculated by the formula 

• Area under the curve (AUC) Measures classifier’s performance [27]. It can be cal-
culated by the formula 

• F1-measure Harmonic mean of the precision and recall. It is calculated by the for-
mula 

 Regarding model’s age evaluation, the formula of Mean F1 is 

These metrics were used in this research to evaluate models on the testing set. 
Table 5 and Fig. 4 shows evaluation results regarding gender prediction. Table 6 and 
Fig.  5 shows best 4 evaluation results regarding age prediction, using big data plat-
form (6 nodes, each node has processor of 16 cores and 32 GB of memory).

As a result, ensemble learning algorithms such as GBM, xgboost [28] and random 
forest, have more advantages on other classification algorithms and achieved best 
Accuracy, (AUC and F1-measure, that is xgboost score 0.8903 in F1-measure for gen-
der prediction).

The tuning of xgboost on gender prediction model is (using xgboost package): max_
depth = 10, eta = 0.1, gamma = 0, min_child_weight = 0.9, lambda = 0, alpha = 0.9, 
nrounds = 150, subsample = 1.

The tuning of xgboost for age prediction is: max_depth = 20, eta = 0.1, gamma = 0, 
min_child_weight = 0.9, lambda = 0, alpha = 0.9, nrounds = 50, subsample = 1.

(7)Accuracy =
Tp + Tn

P + N

(8)AUC =

∫ 1

0
TPR(x)dx

(9)TPR =
Tp

Tp + Fn

(10)F1-measure =
2 ∗ Precision ∗ Recall

(Precision+ Recall)

(11)Mean F1 =
F1 grroup (A)+ F1 grroup (B)+ F1 grroup (C)

3
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Increasing the number of trees more than 150 trees for xgboost in gender prediction 
didn’t improve gender model accuracy. Also increasing the number of trees more than 50 
didn’t improve age model accuracy. That is at model learning process, each time we added 

Table 5 Results for gender prediction

Algorithm Accuracy AUC Classification 
time (s)

XGBoost 0.8558 0.9226 0.3988

Logistic regression 0.8062 0.8727 0.3594

Naive Bayes 0.7084 0.7406 11.1174

Random forest 0.8396 0.9011 0.5021

GBM 0.8415 0.9039 0.9394

Bagged CART 0.8379 0.901 1.3061

GLMNET 0.7927 0.8669 0.2447

KNN 0.7233 0.7641 9.9087

C5.0 0.8317 0.9023 1.4531

CART 0.7295 0.7627 0.4628

LDA 0.7813 0.8543 12.6713

SVM 0.8149 0.8796 1.5702

Fig. 4 Results of classification algorithms for gender model
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tree to the xgboost model, the error rate is being tested on training and testing set, if the 
error rate on test set doesn’t decrease, learning process should be stopped, even if the error 
rate of the training set continued to decline, because most likely the model is going to 
overfit.

Gain metric is considered as a measure for features importance, therefore it used to 
detect informative features for gender and age models.
Gain implies the relative contribution of the corresponding feature to the model calcu-

lated by taking each feature’s contribution for each tree in the model. A higher value of 

Table 6 Results for age prediction

Algorithm Accuracy Mean F1 Classification 
time (s)

XGBoost 0.655 0.6512 0.4596

Random forest 0.6428 0.6380 0.4920

GBM 0.626 0.6196 1.2764

Bagged CART 0.6331 0.6301 1.5232

Fig. 5 Results of classification algorithms for age model
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this metric when compared to another feature implies it is more important for generat-
ing a prediction. It is calculated by the formula [28]

The proposed framework was selected based on the comparison between the results of 
classification methods as Fig. 6.

According to xgboost model, the top predicted features for gender model based on 
gain measure are entropy of duration for received calls, services that were oriented for 
young girls. Figure 7 shows gain measure for top 5 informative features for gender pre-
diction. Figure 8 shows gain measure for top 4 informative features for age prediction, 
like entropy of all calls’ durations, average SMSs sent by the customer, etc... 

These results reflect the nature of our conservative society where males usually bear 
responsibilities more than females, so that the males handle several types of contacts 

(12)Gain =
1

2

[

(
∑

i∈IL
gi
)2

∑

i∈IL
hi + �

+

(

∑

i∈IR
gi

)2

∑

i∈IR
hi + �

−

(
∑

i∈I gi
)2

∑

i∈I hi + �

]

− γ

I=IL
⋃

IR

(13)gi =
ϑL

(

Y , f (x)
)

ϑ f (x) f (x)=f (m−1)(x)

(14)hi =
ϑ2L

(

Y , f (x)
)

ϑ f (x)2 f (x)=f (m−1)(x)

Fig. 6 Proposed framework

Fig. 7 Top 5 predicted features for gender
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(business, family, friends, ...). This justifies entropy in their telecommunication behav-
ior (Figs. 1, 5). Also; with age model in (Figs. 2, 7) shows that group (A) which contains 
young people at the university age have less entropy because of having less contact types. 
The older the age, the more entropy we find in their telecommunication behavior com-
pared to group (B) and (C). Less average transactions per contact can be justified by the 
increase of commitments towards more people and bigger families, which is a common 
thing in our country.

The limitation of this work is collecting reliable data (for training and testing) from 
random customers (only about 18000 customers) took a lot of time (about 6 months) 
because of following the direct methods and limitation of human resources for this 
process.

This work could be improved by being extended to include 2 new age-related groups 
which aren’t included right now, one for people who are less than 18 years old and 
another one for people who are above 60 years old, and achieve a more balanced per-
centage regarding the gender to be more equal.

In addition, this work was conducted on two types of CDRs only, (calls CDR and SMS 
CDR), that we couldn’t handle other types of CDR due to storage and process limita-
tions. Internet usage CDR is considered as another data source to extract more valuable 
features, if the work gets rid of previously mentioned limitations, the reliable data set 
would be larger and more suitable for deep learning algorithms and the models will be 
more robust and accurate.

Another limitation is that, this work has been applied in the Syrian society, which may 
differ from other societies, so the informative features in this study could be more or less 
important in other societies.

Conclusion
This work needed a lot of effort to analyze telecom customer behavior, based on their 
actions, services and contract information. The main contribution of this work is the 
end-to-end solution that approaching customer data from multiple aspects in the tel-
ecoms domain. Starting from creating enormous number of features combined with 

Fig. 8 Top 4 predicted features for age



Page 15 of 16Al‑Zuabi et al. J Big Data            (2019) 6:18 

different types (behavioral, social, spatial, mobility, temporal, services and contract fea-
tures). This grants us the opportunity to have deep insight on the customers. Then the 
relation between the age and gender with variety of informative attributes were studied 
based on statistical properties.

Another research direction is to explore more attribute related to the customer, and 
use these results to create dynamic offers system with an intelligence high enough to 
recommend and customize personalized offers.
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