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ABSTRACT
Human migration is a type of human mobility, where a trip in-
volves a person moving with the intention of changing their home
location. Predicting human migration as accurately as possible is
important in city planning applications, international trade, spread
of infectious diseases, conservation planning, and public policy
development. Traditional human mobility models, such as gravity
models or the more recent radiation model, predict human mobility
flows based on population and distance features only. These models
have been validated on commuting flows, a different type of human
mobility, and are mainly used in modeling scenarios where large
amounts of prior ground truth mobility data are not available. One
downside of these models is that they have a fixed form and are
therefore not able to capture more complicated migration dynamics.
We propose machine learning models that are able to incorporate
any number of exogenous features, to predict origin/destination
human migration flows. Our machine learning models outperform
traditional human mobility models on a variety of evaluation met-
rics, both in the task of predicting migrations between US counties
as well as international migrations. In general, predictive machine
learning models of human migration will provide a flexible base
with which to model human migration under different what-if
conditions, such as potential sea level rise or population growth
scenarios.
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1 INTRODUCTION
Models of human mobility in their different forms are important
for many reasons. Models of human commuting can help reduce
traffic congestion and pollution, and can be used to drive land use
policy and development choices [5]. Models of human migration
are equally important to policy makers as they can give broader
estimates of how the population of an area will change in upcoming
years, how labor markets might be affected [7], how infectious
diseases spread [1, 27], and how international trade will change
[8]. Much recent research focuses on modeling human commuting
flows [16, 20]; however little has focused on explicitly modeling
human migration.

Human mobility has been traditionally modeled with the so-
called gravity model, which posits that the probability of a trip
between two locations decays directly as a function of the dis-
tance between them. This model was introduced in its modern
form in 1946 [31] and has been used in many applications since
[3, 11, 14, 18, 21, 25]. More recently, the radiation model [26] has
been shown to capture long range trips better than gravity based
models, and is described as ‘a universal model for mobility and
migration patterns’. The radiation model posits that the probability
of a trip will decay indirectly with distance and directly with the
amount of intervening opportunities, a notion first proposed by
Stouffer [28]. The radiation model has been extended several times
since being proposed in 2012 [20, 24, 30]. In general, gravity models
have been shown to be more capable of reproducing commuting
flows, i.e. human mobility at small spatial scales [16], while radia-
tion models have been shown to be better at reproducing migration
flows, i.e. human mobility at larger spatial scales [26]. Additionally,
human migrations have been estimated by fitting generalized linear
models derived from the gravity model [4, 6]. Both gravity and ra-
diation models are analytical models with crafted functional forms
and limited input data requirements. These models are focused on
explaining human migration, rely on linear relationships between
independent variables, and use hand crafted features for each zone.
These approaches, while useful for explaining human migration,
trade predictive power for interpretability. Data sources such as the
World Bank and US Census provide many zone-based features that
can be algorithmically combined in a non-linear manner by tree or
neural network based models to best predict human migration.

Our key contributions are as follows:

(1) We develop the first general machine learning formulation
of the human migration prediction problem.

(2) We develop a pipeline for training machine learning models
to tackle this problem that includes procedures to deal with
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dataset imbalance, hyperparameter tuning, and performance
evaluation.

(3) We develop a custom loss function for training artificial
neural networks that is more suitable for the migration pre-
diction task.

(4) We compare the performance of machine learning models
to traditional models of human migration on two datasets,
and show that the machine learning models outperform the
traditional models in all cases.

2 TRADITIONAL MIGRATION MODELS
In human mobility modeling, we are usually given n zones with the
goal of predicting the number of people, Ti j , that move from every
zone i to every other zone j. Traditional mobility models, such
as the radiation model [26] and the gravity model [16], break the
problem of estimatingTi j into two pieces: estimating the total num-
ber of people Gi that leave zone i (also referred to as a production
function), and estimating the probability Pi j of a move occurring
from i to j. The predicted number of migrants from i to j would
be T̂i j = GiPi j . As a convention, the probabilities are normalized
such that, given an origin i , the probabilities of traveling to all
other destinations sum to 1, i.e.

∑n
j=1 Pi j = 1. If prior information

about the number of incoming and outgoing travelers per zone is
known, then a constrained framework, such as the one described in
Lenormand et al [16], can be used. If this information is not known,
which is the case in predicting migrations, then a production func-
tion must be used to estimate the number of outgoing travelers
per zone instead. A simple production function for a dataset can be
found by expressing the number of outgoing migrants of a zone as
a constant fraction of the population of that zone (for counties in
the US, this percentage is ≈ 0.03 [26]). Given prior timestep’s data
on the populationmi and the corresponding number of outgoing
migrantsOi in the current timestep for every zone i , the production
function is expressed as Gi = M(mi ) = αmi , where α is the slope
of the line of best fit through the pairs (mi , Oi ).

The traditional models of human mobility that we include in
this study are: the radiation model [26], extended radiation model
[30], and gravity models with both power and exponential distance
decay functions [16]. The only information used by these models
is:mi , population of a zone i for both the origin and destination
zones; di j , the distance between two zones i and j; and si j , a metric
of intervening opportunities measured as the total population of
all intervening zones between i and j, defined as all zones whose
centroid falls in the circle centered at i with radiusdi j (not including
zones i or j). See Table 1 for a description of each model.

All of these models have two parameters that must be tuned
using historical data: the production function parameter, α , that
determines what fraction of the population of a zone will migrate
away in a given year, and a model parameter, β . From a socio-
economic point of view, traditional models have the advantage of
being interpretable, however we will show that this interpretability
comes at a cost of predictive accuracy, as machine learning models
can use similar historic data to achieve better results.

3 EVALUATION METHODS
To evaluate how well alternative models perform, we use four
metrics that compare how well a predicted migration matrix, T̂,
recreates the ground truth values, T. The first two of these (CPC ,
CPCd ) have been used in previous literature to evaluate human
mobility models [16, 17], and the other two are standard regression
metrics:

Common Part of Commuters (CPC) This metric directly com-
pares numbers of travelers between the predicted and ground truth
matrices. It will be 0 when the two matrices have no entries in
common, and 1 when they are identical. We note that this metric,
as used in previous studies of commuting flows, is identical to the
Bray-Curtis similarity score used to compare abundance data in
ecological studies [9, 15].

CPC(T, T̂) =
2
∑n
i, j=1min(Ti j , T̂i j )∑n

i, j=1Ti j +
∑n
i, j=1 T̂i j

(1)

Common Part of Commuters Distance Variant (CPCd ) This
metric measures how well a predicted migration matrix recreates
trips at the same distances as the ground truth data. In this defi-
nition, N is a histogram where a bin Nk contains the number of
migrants that travel between 2k − 2 and 2k kilometers. It will be
0 when the two matrices do not have any migrations at the same
distance, and 1 when all fall within the same distances.

CPCd (T, T̂) =
2
∑∞
k=1min(Nk , N̂k )∑∞

k=1 Nk +
∑∞
k=1 N̂k

(2)

Root mean squared error (RMSE) This is a standard regression
measure that will “punish” larger errors more than small errors.
This score ranges from 0 in a perfect match, to arbitrarily large
values as the predictions become worse.

RMSE(T, T̂) =

√√√
1
n

n∑
i, j=1

(Ti j − T̂i j )2 (3)

Coefficient of determination (r2) This score measures the good-
ness of fit between a set of predictions and the ground truth values.
This score ranges from 1, in a perfect fit, to arbitrarily negative
values as a fit becomes worse, and is 0 when the predictions are
equivalent to the expectation of the ground truth values.

r2(T, T̂) = 1 −
∑n
i, j=1(Ti j − T̂i j )2∑n
i, j=1(Ti j − T̄ )2

(4)

In addition to the previous four metrics, we compare the ground
truth number of incoming migrants and the predicted number
of incoming migrants per zone using mean absolute error (MAE)
and r2. The predicted number of incoming migrants for a zone,
i , is calculated as v̂i =

∑n
j=1Tji . We argue that it is important to

explicitly measure how well each model performs at estimating the
number of incoming migrants, because the number of incoming
migrants to a location will be the most important measure for
policymakers in that area. Incomingmigrant predictions can inform
population growth estimates and hence infrastructure planning and
job analysis.
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Model Equation

Radiation T̂i j = M(mi )
mimj

(mi+si j )(mi+mj+si j )

Extended Radiation T̂i j = M(mi )
[(mi+mj+si j )β−(mi+si j )β ](mβ

i +1)
[(mi+si j )β+1][(mi+mj+si j )β+1]

Gravity with Power Law T̂i j = M(mi )
mimjd

−β
i j∑n

k=1 mkd
−β
ik

Gravity with Exponential Law T̂i j = M(mi )
mimj e

−βdi j∑n
k=1 mk e−βdik

Table 1: Traditional migration models

4 LEARNING MIGRATION MODELS
Formally, the problem of modeling human migration is as fol-
lows: given n zones, d1 features describing each zone, F ∈ Rn×d1 ,
and d2 joint features describing features between a pair of zones,
J ∈ Rn×n×d2 , at some timestep t , the objective is to predict the
origin/destination migration matrix T̂ ∈ Nn×n at the next timestep,
t + 1, where an entry T̂i j represents the estimated number of mi-
grants relocating from zone i to zone j. Our goal is to estimate
a function f (Fi :, Fj :, Ji j ) = T̂i j , which takes the features of zone
i and j, as well as the joint features between them, as input, and
directly outputs the estimated number of migrants that travel from
i to j. This approach is different from how the traditional migra-
tion models work as it does not require a production function, but
instead directly predicts T̂i j . This formulation contains the simplify-
ing assumption that migrant flows are static in time, meaning that
they can be entirely determined by the features from the previous
timestep. In reality migrant flows will be dependent on temporal
features, such as long term developmental trends, however many
places will not have enough data to take advantage of these patterns.
With this formulation, our models can be applied more broadly to
predict future migration patterns in locations that have only col-
lected a single year of data.

Hyperparameter optimization
To fit f for a given dataset, we will train two machine learning
models, “extreme” gradient boosting regression (XGBoost model)
[2], and an artificial neural network model (ANN model) [13]. Each
of these models contains several hyperparameters that must be
tuned to obtain good performance on a given learning task. Our first
model, the XGBoost model, is a standard machine learning model
based on gradient boosting trees [19] that often performs very well
on many regression and classification tasks. One benefit of this
model is that it gives a ranking of the relative feature importances
[10]. The parameters of the XGBoost model that we consider for
hyperparameter tuning are the maximum tree depth, number of
estimators, and learning rate. Our ANN model is composed of
densely connected layers with ReLU activation layers1. We tune
the following ANN parameters: loss function, number of layers,
layer width, number of training epochs, and training mini-batch
size.

1Our model is implemented in Python with the Keras library: https://keras.io/

Dealing with zero-inflated data
We observe that migration data is heavily zero-inflated, where in
any given year, most pairs of zones do not have any migrants trav-
eling between them, i.e. Ti j = 0 for most (i, j) pairs. Considering
migrations between US counties [23], less than 1% of the possible
pairs of counties have migrations between them. This imbalance
will cause problems for machine learning models. To address this
problem, when creating a training dataset we undersample “neg-
ative” samples between pairs of zones for which there are no ob-
served migrations. This is a naïve technique that will necessarily
throw out available information [12]. To offset this, we introduce a
hyperparameter k that determines the number of “negative” exam-
ples of migrations to train with. If there are nt pairs of zones where
there are observed migrations, “positive examples”, we include all
nt , and an additional ntk randomly chosen zone pairs where there
are no observed migrants. This hyperparameter is included in both
the XGBoost and ANN model parameter searches. We give further
details on the hyperparameter tuning process in Section 5.

Custom ANN loss function
Previously we mentioned that our ANN model will consider differ-
ent loss functions as a hyperparameter. Common loss functions for
regression tasks include “mean squared error” (MSE), “mean abso-
lute error” (MAE), and “mean absolute percentage error” (MAPE).
Our preliminary experimental results show that MAE and MAPE
loss functions perform poorly, partially due to their inability to
punish large errors and deal with many zeros respectively. To con-
trast with the aforementioned zero-inflation problem, we observe
that the distribution of migrant counts has a long tail, whereby few
pairs of zones consistently experience large volumes of migrations.
Considering these observations, and because the CPC metric is one
of the key metrics of interest (described in detail in Section 3), we
derive a new loss function based on CPC to train the ANN model
with. This loss function is given as:

L(y, ŷ) = 1 −
2
∑n
i=1min(yi , ŷi )∑n

i=1 yi +
∑n
i=1 ŷi

(5)

Where yi is a migration flow entry from T. The gradient update for
this loss function is:

∂L(y, ŷ)
∂ŷj

=
2
∑n
i=1min(yi , ŷi )

(∑n
i=1 yi +

∑n
i=1 ŷi )2

−

{
2 ŷj < yj

0 otherwise∑n
i=1 yi +

∑n
i=1 ŷi

(6)

https://keras.io/
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Intuitively, this loss will ‘reward’ predictions where the number
of migrants matches the ground truth, while also enforcing per link
absolute error to be minimized. This loss function is not exactly
equivalent to the CPC , as during the ANN training it will only
consider a single mini-batch worth of samples at a time (in our case
|y | = |ŷ | = |mini batch|, where as the CPC metric is a function of
the entire migration matrix). Empirically this custom loss function
results in better validation performance and faster training times
than MSE loss.

5 EXPERIMENTS
Datasets
We perform experiments comparing the performance of traditional
models to our machine learning models on two datasets, the USA
Migration dataset and the Global Migration dataset.

The USA Migration dataset consists of yearly intra-county mi-
grations in the USA between 3106 counties from the IRS Tax-Stats
data [23] for the 11 years in the range from 2004 to 2014. We supple-
ment the migration data with the following 7 per-county features
(taken from the US Census estimates and calculated from the Census
TIGER line maps of US county boundaries): population, land area,
population density, median household income, county water area, is
a coastal county, and number of neighboring counties. In addition to
these 7 per-county features, we add the following between-county
features: distance, intervening population, intervening land area,
intervening number of counties, intervening population density,
and intervening median income. The intervening features are cal-
culated based on the idea of “intervening opportunities” presented
in the radiation model. For any given county-level variable, x , e.g.
population, the intervening amount of that variable between coun-
ties i and j is defined as sxi, j , the sum of all x in the intervening
counties that fall within the circle centered at county i with a radius
to county j (excluding xi and x j ).

The Global Migration dataset consists of decadal inter-country
migration data between 207 countries from the World Bank Global
Bilateral Migration Database [22]. The Global Migration dataset
contains 5 timesteps, one every 10 years from 1960 to 2000. In the
Global Migration dataset we add the following 5 per-country fea-
tures (taken from World Bank World Development Indicators data
[29]): population, population density, population growth, agricul-
tural emissions, and land area. Additionally, we include 3 between-
country features: distance, intervening population, and intervening
land area.

For each year of data in the USA Migration and Global Migration
datasets we create an ‘observation’ for each pair of zones, an origin
zone and destination zone (counties in the USA Migration dataset
and countries in the Global Migration dataset). Each observation
consists of the per-zone features for both the origin zone and desti-
nation zone (population of origin, population of destination, etc.)
and the between-zone features of the origin and destination. This
corresponds exactly to the Fi :, Fj :, Ji j of the function f (described
in Section 4) that we want to learn. An observation is associated
with the target number of migrants, Ti j , traveling from the origin
to the destination. Formally, for a given year, t , number of zones, n,
number of per-zone features, d1, and number of between-zone fea-
tures, d2, we create a matrix of observations Xt ∈ Rn2×(2d1+d2) and

vector of targets Yt ∈ Rn2
, capturing the migration flows observed

in year t + 1.

Experimental Setup
To select the hyperparameters of the models that we described in
Sections 2 and 4, we consider triplets of “years” of data as train-
ing, validation, and testing sets. Specifically, for three years of data
{(Xt−2,Yt−2), (Xt−1,Yt−1), (Xt ,Yt )}, we call (Xt−2,Yt−2) the train-
ing set, (Xt−1,Yt−1) the validation set, and (Xt ,Yt ) the test set. We
tune the hyperparameters of the models using a randomized grid
search with 50 sampled hyperparameters using the training and
validation sets. We select the best set of hyperparameters according
to theCPC score, then use those parameters to train a model on the
validation set and record its performance on the test set. We repeat
this process for each (t − 2, t − 1, t) triplet of years in each dataset.
Our final results are reported as averages over the test set results.

A hyperparameter present in both XGBoost and ANN models
is the downsampling rate, k . As a preprocessing step for a given
year of training data (Xt ,Yt ), we include all observations,Xi where
Yi > 0 (let this number of samples bem), and choose k ∗m random
samples with replacement from the remaining observation (where
Yi = 0). This sampling process only takes place when training a
model. When testing a model on the validation or test sets, the full
datasets are always used. For experiments with the USA Migration
dataset we consider values of k in a uniform distribution of integers
from 5 to 100, while for experiments with the Global Migration
dataset we consider the uniform distribution of integers from 1 to
5, because the average percentage of non-zeros is < 1% and 20%
respectively.

For the XGBoost models, we sample the following parameters:
maximum tree depth from U{2, 7}2, number of estimators from
U{25, 275}, and learning rate uniformly in the range from 0 to 0.5.
For the ANN models we sample the following parameters: network
loss function uniformly from {‘CPC Loss’, ‘MSE’}, number of layers
uniformly from U{1, 5}, layer width from U{16, 128}, number
of training epochs from U{10, 50}, and training mini-batch size
uniformly from {29, 210, 211, 212, 213, 214}.

We calibrate the parameters of the traditional models in a similar
manner. Every traditional model, except for the radiation model,
has two parameters, α and β , that must be calibrated to give useful
results (where the radiation model only uses α ). For each pair of
years of data, {(Xt−1,Yt−1), (Xt ,Yt )}, that we refer to as training
and testing sets respectively, we find the value of α that gives the
best production function on the training set. Similarly, we find the
value of β that maximizes theCPC score of each traditional models
on the training set. We then use these α and β values to run each
model on the testing set, and report the results as averages over all
test set results.

To directly compare how the ML models and traditional models
perform under the same conditions, we perform experiments where
the ML models are used with the same production functions as
the traditional models. This imposes an artificial constraint on
the ML models, as these models are able to directly estimate the
number of migrations between two zones, without supplemental
information on the number of outgoing migrants from each zone.

2U{a, b } is the discrete uniform distribution.
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USA Migrations Metrics on full matrix Metrics on incoming migrants vector
(Average Incoming Migrants = 3,196)

Production Function CPC CPCd RMSE r2 MAE r2

Gravity Model Exponential Decay 0.53 +/- 0.01 0.66 +/- 0.02 87.4 +/- 9.0 -1.48 +/- 0.28 1,216 +/- 128 0.67 +/- 0.03
Gravity Model Power Law Decay 0.56 +/- 0.01 0.78 +/- 0.02 75.7 +/- 8.0 -0.86 +/- 0.26 1,129 +/- 129 0.72 +/- 0.04
Radiation Model 0.53 +/- 0.01 0.76 +/- 0.02 47.6 +/- 5.0 0.26 +/- 0.09 1,346 +/- 148 0.80 +/- 0.02
Extended Radiation Model 0.58 +/- 0.01 0.83 +/- 0.01 35.6 +/- 3.0 0.59 +/- 0.03 1,123 +/- 117 0.86 +/- 0.02
XGBoost model - traditional features 0.51 +/- 0.08 0.74 +/- 0.07 28.6 +/- 5.4 0.72 +/- 0.10 1,151 +/- 249 0.86 +/- 0.04
ANN model - traditional features 0.63 +/- 0.01 0.86 +/- 0.02 35.1 +/- 3.2 0.60 +/- 0.03 911 +/- 107 0.91 +/- 0.01
XGBoost model - extended features 0.58 +/- 0.03 0.78 +/- 0.02 24.2 +/- 1.4 0.81 +/- 0.02 968 +/- 56 0.89 +/- 0.02
ANN model - extended features 0.68 +/- 0.01 0.89 +/- 0.02 29.8 +/- 2.7 0.71 +/- 0.02 935 +/- 98 0.91 +/- 0.02

No Production Function CPC CPCd RMSE r2 MAE r2

XGBoost model - traditional features 0.54 +/- 0.11 0.99 +/- 0.02 18.5 +/- 6.1 0.88 +/- 0.08 3,091 +/- 1,740 0.41 +/- 0.85
ANN model - traditional features 0.63 +/- 0.02 0.88 +/- 0.06 35.3 +/- 3.5 0.60 +/- 0.04 1,188 +/- 259 0.84 +/- 0.16
XGBoost model - extended features 0.62 +/- 0.04 0.99 +/- 0.02 13.0 +/- 1.5 0.94 +/- 0.02 2,060 +/- 622 0.76 +/- 0.28
ANN model - extended features 0.69 +/- 0.01 0.93 +/- 0.05 28.0 +/- 3.6 0.75 +/- 0.03 909 +/- 48 0.92 +/- 0.04

Table 2: USAMigration results. Comparison of the ANN and XGBoost models with and without a production function to tradi-
tionalmigrationmodels. The values shown in the table are the average and standard deviations of themodels’ test performance
on 2006 through 2014 data. Bold values indicate the best values per column.

Global Migrations Metrics on full matrix Metrics on incoming migrants vector
(Average Incoming Migrants = 674,858)

Production Function CPC CPCd RMSE r2 MAE r2

Gravity Model Exponential Decay 0.16 +/- 0.00 0.16 +/- 0.00 62,218 +/- 5,341 0.02 +/- 0.03 651,194 +/- 80,220 0.00 +/- 0.02
Gravity Model Power Law Decay 0.16 +/- 0.00 0.15 +/- 0.00 61,523 +/- 5,278 0.05 +/- 0.00 628,678 +/- 79,474 0.03 +/- 0.03
Radiation Model 0.16 +/- 0.00 0.14 +/- 0.00 62,173 +/- 5,277 0.02 +/- 0.00 614,483 +/- 79,378 0.04 +/- 0.02
Extended Radiation Model 0.16 +/- 0.00 0.14 +/- 0.00 62,108 +/- 5,299 0.03 +/- 0.00 618,576 +/- 76,150 0.03 +/- 0.02
XGBoost model - traditional features 0.18 +/- 0.01 0.14 +/- 0.01 58,377 +/- 5,141 0.14 +/- 0.01 597,478 +/- 79,178 0.10 +/- 0.01
ANN model - traditional features 0.19 +/- 0.01 0.15 +/- 0.01 60,272 +/- 4,610 0.08 +/- 0.02 589,789 +/- 79,542 0.26 +/- 0.03
XGBoost model - extended features 0.21 +/- 0.01 0.16 +/- 0.01 57,909 +/- 5,409 0.16 +/- 0.02 573,090 +/- 56,987 0.15 +/- 0.02
ANN model - extended features 0.22 +/- 0.02 0.17 +/- 0.01 58,887 +/- 4,477 0.12 +/- 0.02 563,259 +/- 74,127 0.24 +/- 0.06

No Production Function CPC CPCd RMSE r2 MAE r2

XGBoost model - traditional features 0.33 +/- 0.02 0.59 +/- 0.03 52,729 +/- 5,455 0.26 +/- 0.26 938,905 +/- 172,834 0.18 +/- 0.28
ANN model - traditional features 0.33 +/- 0.01 0.37 +/- 0.04 56,005 +/- 882 0.20 +/- 0.11 537,351 +/- 44,034 0.53 +/- 0.16
XGBoost model - extended features 0.43 +/- 0.03 0.64 +/- 0.02 47,329 +/- 5,073 0.42 +/- 0.13 577,473 +/- 77,315 0.48 +/- 0.34
ANN model - extended features 0.40 +/- 0.02 0.43 +/- 0.02 50,921 +/- 3,556 0.33 +/- 0.13 459,841 +/- 55,479 0.52 +/- 0.30

Table 3: Global Migration results. Comparison of the ANN and XGBoost models with and without a production function to
traditional migration models. The values shown in the table are the average and standard deviations of the models’ test per-
formance on 2006 through 2014 data. Bold values indicate the best values per column.

To apply a production function, M , to the predictions made by a
ML model, T̂, we create a new set of predictions, T̂′, where an entry

T̂ ′
i j = M(mi )

T̂i j∑n
k=1 T̂ik

.

Results
Tables 2 and 3 show the average results over all years of data of the
ML models and traditional models in the USA Migration and Global
Migration datasets respectively. From these tables we observe that
the best traditional model for the USA Migration dataset is the
Extended Radiation model, beating the other traditional models

in all metrics. None of the traditional models are able to capture
the migration dynamics in the Global Migration dataset; they all
have an r2 score near 0, meaning that a model which predicts the
average number of migrants for every link would perform just as
well. The ML models perform much better. In the case where the
ML models are constrained to the same conditions as the traditional
models, using traditional features and a production function, the
ANN model beats all of the traditional models in 5 out of the 6 mea-
sures in the USA Migration datasets, and the XGBoost model beats
all the traditional models in 4 out of the 6 metrics. Similarly, the
ML models considerably outperform the traditional models in the



COMPASS ’18, June 20–22, 2018, Menlo Park and San Jose, CA, USA Caleb Robinson and Bistra Dilkina

USA Features Importance Global Features Importance

Intervening number of counties 25.3% +/- 2.4% Population growth of origin 19.5% +/- 16.0%
Population of origin (trad) 15.7% +/- 1.7% Intervening population (trad) 12.3% +/- 3.7%
Population of destination (trad) 14.2% +/- 0.9% Agricultural emissions of destination 10.6% +/- 5.8%
Intervening population (trad) 6.1% +/- 1.2% Intervening land area 8.7% +/- 5.6%
Is destination coastal 4.3% +/- 4.6% Population growth of destination 7.9% +/- 6.2%
Distance between counties (trad) 3.7% +/- 0.9% Population of destination (trad) 6.9% +/- 0.8%
Intervening area 3.6% +/- 0.9% Distance between counties (trad) 6.6% +/- 1.9%
Area of destination 3.5% +/- 0.5% Population of origin (trad) 6.1% +/- 1.6%
Number of neighbors destination 3% +/- 1.6% Population density of destination 5.7% +/- 4.5%
Water area of origin 3% +/- 1.3% Land area of origin 5.2% +/- 3.1%

Table 4: Top 10 most important (extended) features in both the USAMigration andGlobal Migration datasets. The values in the
table show the average and standard deviations of the information gain feature importances from an XGBoost model trained
on the extended feature set for each timestep of data.

Global Migration, outperforming them in all metrics. Considering
the extended feature set results, the ML models perform even bet-
ter. The ANN and XGBoost models without a production function
outperform the same models with a production function in 5 out of
the 6 metrics. The XGBoost model outperforms the ANN model in
3 out of the 4 metrics that evaluate the models’ per link predictions,
however the ANN model performs better on the two metrics that
evaluate the aggregate incoming migrant prediction performance.

These results suggest that more features than those which are
used by the traditional models, are needed to accurately predict
human migrations. The ability of ML models to incorporate any
number of additional features is one of the key motivations for
using them to obtain more accurate results. Considering this, it will
be insightful to understand, which of the features are most informa-
tive to the ML models. Since feature importance analysis for ANNs
is quite challenging, we report in Table 4 the top 10 most important
features for both datasets (based on information gain) in the XG-
Boost model trained on the extended feature set, averaged over all
years of data. In both datasets, the intervening population feature
is in the top 4 important features which validates the intuition that
intervening opportunities are important in predicting migrations.
The most important feature in the USA Migration dataset is the
number of intervening counties between two locations, a simpler
form of the intervening population idea. In the Global Migration
dataset, the population growth of the origin is the most impor-
tant feature on average, with a large standard deviation. In some
years this feature is very important, however in other years it is
less so. Intuitively, population growth will be correlated with the
amount of incoming migration. During relatively stable years, with
small population growth, other features will be more predictive of
migration.

In Figure 1 we show the difference between the actual and pre-
dicted numbers of incoming migrants per county for the two best
traditional models, and all of the ML models without production
functions. From these maps we can see that between ML models,
those trained with the extended feature set perform better than
those trained with only the traditional features. Specifically, with-
out the extended features, the ML models underpredict the number
of migrations to the western portion of the United States. When

the extended features are taken into account, the models are able
to correct for this spatial bias. Holding with the experimental re-
sults, we can see that the ANN model with extended features best
captures the incoming migrant distributions per county. The ANN
model is able to more accurately match the number of migrants
that travel to rural areas (e.g. to the midwestern US), compared to
the traditional models that consistently over estimate the numbers
of migrants to rural areas. In general, these maps agree with our
empirical results, that the ANN model (with the lowest average
incoming migrantsMAE) is able to best predict migrations.

6 CONCLUSION
With the increasing availability of high resolution socio-economic
data in countries that record human migrant flows, it is possible
to use machine learning models of human migration rather than
traditional gravity or radiation models. Machine learning models
offer greater levels of modeling flexibility, as they can combine
many input features in non-linear ways that can not be captured
by static equations. Furthermore, machine learning models can be
easily customized to the problem or country at hand.

We develop two machine learning based models for the task
of predicting human migration flows, for both between counties
in the US and between countries across the world. We compare
these models to traditional human migration models using two sets
of features and show that our models outperform the traditional
models in most of the evaluation metrics.

We would like to extend this work to better explain human mi-
gration through a more complete analysis of features included in
the model, and incorporating different models. While the XGBoost
model can provide a ranking of feature importances, this does not
fully explain the dynamics that drive human migration. Addition-
ally we would like to study how these migration models could be
specialized to predict migrations under extreme weather events.
Hurricanes and other natural disasters can displace large popu-
lations, and determining where these populations will resettle is
the first step towards providing an unique planning tool for policy
makers. To achieve these goals, higher resolution migration data,
on both spatial and temporal scales, will need to be obtained. Ex-
treme weather events, by definition, are short lived and their effects
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Figure 1: USA Migrations modeling error. These maps show the difference between the ground truth number of incoming
migrants and predicted number of incomingmigrants per county for 6 models in 2014. Blue corresponds to overestimation by
the model, red to underestimation by the model, and white if the model accurately predicts the correct number of incoming
migrants. Top row shows the results for the Extended Radiation model and Gravity model with power law distance decay.
Middle row shows the results for ANN models trained with the extended and common feature sets. Bottom row shows the
results for XGBoost models trained with the extended and common feature sets.
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are averaged out in coarser resolution datasets such as the ones
used in this study. Finally, we would like to study the connections
between human migration and other processes primarily driven by
aggregate human behaviors such as inter- and intra-national trade.
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